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1 Introduction

Classifying the positive integers as primes, composites, and the unit, is so
familiar that it seems inevitable. However, other classifications can bring in-
teresting relationships to our attention. In that spirit, let us classify positive
integers by the number of principal divisors they possess, where we define a
principal divisor of a positive integer n to be any prime-power divisor pa|n
which is maximal (so p is prime, a is a positive integer, and pa+1 is not a
divisor of n). The standard notation pa||n can be read as “pa is a principal
divisor of n”.

The Fundamental Theorem of Arithmetic is usually stated in a form em-
phasizing how primes enter the structure of the positive integers, such as:
Every positive integer is the product of a unique finite multiset of primes.
(Recall that a multiset is a collection of elements in which multiple occur-
rences are permitted.) Alternatively, the Fundamental Theorem of Arith-
metic can be stated in a form that focuses on how maximal prime-powers
enter the structure of the positive integers, such as: Every positive integer is
the product of a unique finite set of powers of distinct primes. Consequently
every positive integer is the product of its principal divisors, and every finite
set of powers of distinct primes is the set of principal divisors of a unique
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positive integer. Of course, the number of principal divisors of n is equal to
the number of distinct prime factors of n, but here the principal divisors are
the simple structural components of n, whereas the distinct prime factors
are but a shadow of that structure. Readers who find the present paper of
interest might find similar interest in [6], where upper bounds on the sum
of principal divisors of n are established by elementary means.

For each integer n ≥ 0, let Pn be the set of all positive integers with
exactly n principal divisors, so P0 = {1}, and

P1 = {2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, · · · },
P2 = {6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 33, 34, 35, 36, 38, · · · },
P3 = {30, 42, 60, 66, 70, 78, 84, 90, 102, 105, 110, · · · },
P4 = {210, 330, 390, 420, 462, 510, · · · }, etc.

In particular, P1 comprises the prime-powers, or principal integers; P2 com-
prises the products of two coprime principal integers, or rank 2 integers; and
so on. Collectively, we call {Pn : n ≥ 0} the rank sets of positive integers.

Clearly the rank sets are a partition of the positive integers, by the
Fundamental Theorem of Arithmetic. Thus it is interesting to look at the
occurrence of runs of consecutive integers within each rank set: this is one
of the relationships immediately brought into focus by the classification.

For compactness, let us write a[r] to denote the run of r consecutive
integers beginning with a, where a and r are positive integers, so

a[r] = {a + i : 0 ≤ i < r}.

We call r the size of the run. In particular, the run a[r] is nontrivial if
r ≥ 2, and a[r] ⊂ Pn is a maximal run in Pn if it is nontrivial and Pn

contains neither a− 1 nor a + r. Thus, the first few maximal runs in P1 are
2[4], 7[3], 16[2], 31[2], 127[2] and 256[2]; the first few maximal runs in P2 are
14[2], 20[3], 33[4], 38[3], 44[3], 50[3] and 54[5].

It is easy to see that the size of runs in Pn is bounded. For if M is
the product of the first n + 1 primes, then M ∈ Pn+1 and any run of M
consecutive integers contains a multiple of M , so any run in Pn has size less
than M . Thus, for each integer n ≥ 0 there is a positive integer r(n) which
is the maximum size attained by runs in Pn. Trivially, r(0) = 1. We have
already seen that r(1) ≥ 4 and r(2) ≥ 5, and we shall soon see that in fact
r(1) = 4. Our main objective is to study r(2), which we shall determine
“within 1”. Later we shall also discuss r(n) for n ≥ 3.
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2 Maximal runs in P1 and P2

Returning to the principal integers, it is clear that any nontrivial run in
P1 contains an even integer so, being principal, any such integer must be
a power of 2. Since 2 and 4 are the only powers of 2 that differ by 2, any
maximal run of principal integers greater than 5 must contain exactly one
even integer, so 2[4] is the unique longest run in P1, and r(1) = 4.

The long-standing conjecture credited to Catalan, that 8 and 9 are the
only two consecutive integers which are nontrivial prime powers, was recently
proved by Mihailescu [11]. From this it follows that any maximal run of
principal integers greater than 9 must contain a power of 2 and any adjacent
number in the run must be a prime. It is well known that 2n − 1 can only
be prime when n itself is prime, and 2n + 1 can only be prime when n is a
power of 2: when n ≥ 3 these two conditions are mutually exclusive, so any
maximal run of principal integers greater than 9 has just two members.

Primes of the form 2n + 1 are Fermat primes. The only known Fermat
primes are 3, 5, 17, 257 and 65537, but no proof is known that there are
no others. Primes of the form 2n − 1 are Mersenne primes. Currently 44
Mersenne primes are known [7]. A distributed computing project known as
GIMPS (the Great International Mersenne Prime Search) has made numer-
ous additions to this list in recent years, but no proof is known that infinitely
many such primes exist. Consequently, although we know 2[4] and 7[3] are
the only maximal runs of more than two principal integers, it is not known
whether P1 contains infinitely many runs of size 2.

What happens with maximal runs of rank 2 numbers? This is less fa-
miliar territory, so one does not know quite what to expect. We shall prove:

Theorem 1 There is no run of 10 consecutive integers in P2.

Hence r(2) ≤ 9. Is this a “sharp” result? It turns out to be “within 1” of the
exact value of r(2). Our methods appear unable to decide on the existence
of runs of size 9 in P2, but our results strongly suggest the following:

Conjecture 1 In P2 there is no run of size 9 and the only maximal runs
of size greater than 6 are 141[8], 212[8], 323[7] and 2302[7].

It may also be true that 91[6] is the only maximal run of size 6 in P2, but
we have less information about runs of size 6 than about longer runs.
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3 Størmer’s Theorems

For any set of primes P let S(P ) be the set of positive integers with all their
prime factors in P , that is, S(P ) is the multiplicative semigroup of positive
integers generated by P . Some results about the integers in S(P ) turn out
to be among the main tools we require to prove Theorem 1.

If D is a non-square integer, the Pell equation x2 −Dy2 = c always has
positive integer solutions when c = 1 (see [12], for example). However, for
other values of c it need not have positive integer solutions; for instance,
this is the case when c = −1 if D ≡ 3 (mod 4). But if c ∈ {1,−1} and
x2 − Dy2 = c does have positive integer solutions, then all such solutions
are generated by the smallest positive solution (x0, y0), usually called the
fundamental solution or minimal solution [12, 16]. In 1897 Carl Størmer
published the following theorem [13] which identifies a remarkable property
of the fundamental solution.

Størmer’s Pell Equation Theorem Let D be a non-square positive in-
teger, let P be the set of prime divisors of D, and let c ∈ {1,−1}. If the
Pell equation x2 −Dy2 = c has positive integer solutions and (x0, y0) is the
fundamental solution, then y0 is the only solution for y that is a possible
member of S(P ).

For example, if D = 2 then S(P ) comprises all the powers of 2. Thus
the fundamental solution (x, y) = (3, 2) is the only solution to x2 − 2y2 = 1
in positive integers with y a power of 2; similarly (1, 1) is the only solution
to x2 − 2y2 = −1 in positive integers with y a power of 2.

Størmer used his Theorem to prove the following result [14], first pub-
lished in 1898.

Størmer’s Neighboring Pairs Theorem For given positive integers A,B,
m,n, a1, · · · , am, b1, · · · , bn, there are at most finitely many sequences of
positive integers x1, · · · , xm, y1, · · · , yn such that

|Aax1
1 · · · axm

m −Bby1
1 · · · byn

n | ≤ 2.

All solutions follow from the fundamental solutions to a finite set of Pell
equations determined by A,B, m, n, a1, · · · , am, b1, · · · , bn.

In principle it is routine to set up the Pell equations referred to in the
Neighboring Pairs Theorem, and to determine the fundamental solutions of
those that do have solutions, so Størmer effectively provided an algorithm
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for solving the Diophantine inequality in the Neighboring Pairs Theorem.
Subsequently he gave simpler proofs of both theorems in a paper [15] that
we commend to the reader. We shall soon solve two special cases of the
neighboring pairs problem by methods illustrating Størmer’s arguments: the
results are stated below as a Corollary to the Neighboring Pairs Theorem.

If P is finite, then by Størmer’s Neighboring Pairs Theorem there are
only finitely many pairs of consecutive integers in S(P ). D. H. Lehmer [9]
gave a new proof of Størmer’s theorem for the case of consecutive integers,
and explicitly computed the last pairs of consecutive integers in S(P ) when
P is any initial subset of the primes with largest member 41 or less [10].
Some related tabulations are given in [4], and some elementary arguments
establishing special instances of Størmer’s result are given in [5] and [8]. The
latter paper, by Halsey and Hewitt, discusses the fascinating connection
between fundamental frequency ratios in Western music and consecutive
pairs of integers in S(2, 3, 5).

S(P ) Last maximal runs
S(2, 3) 8[2], 2[3]

S(2, 3, 5) 80[2], 8[3], 3[4]

S(2, 3, 5, 7) 43742], 483], 7[4]

Table 1: Last maximal runs in S(P )

For our present purposes, we note in Table 1 the last maximal runs of
various sizes in S(P ) when P is an initial subset of the primes with largest
member 7 or less. We shall also need the following consequence of Størmer’s
theorem:

Corollary 1 The only pairs of integers satisfying |3a − 5b| = 2 are {3, 5}
and {25, 27}, and the only pair satisfying |3a − 7b| = 2 is {7, 9}.

Proof Størmer’s method applied to pairs of integers {3a, 5b} satisfying
|3a−5b| = 2 puts them equal to x−1 and x+1, so their product is of the form
x2 − 1 = Dy2, where y ∈ S(3, 5) and D ∈ {3a5b|1 ≤ a, b ≤ 2} is non-square,
so D ∈ {15, 45, 75}. For these three values of D, the corresponding Pell
equations have fundamental solutions (x0, y0) = (4, 1), (161, 24) and (26, 3)
respectively. Now Størmer’s Pell Equation Theorem shows that y0 = 1
and 3 are the only y solutions of these Pell equations that lie in S(3, 5).
The corresponding x solutions yield the pairs {x0 − 1, x0 + 1} = {3, 5} and
{25, 27}, so these are the only pairs {3a, 5b} that differ by 2.
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Similarly, pairs of integers {3a, 7b} satisfying |3a − 7b| = 2 must corre-
spond to fundamental solutions of x2 − 1 = Dy2, where y ∈ S(3, 7) and D
is non-square, so D ∈ {21, 63, 147}. The corresponding Pell equations have
fundamental solutions (x0, y0) = (55, 12), (8, 1) and (97, 8) respectively. Now
y0 = 1 is the only y solution of these Pell equations that lies in S(3, 7). The
corresponding x solution yields the pair {x − 1, x + 1} = {7, 9}, so this is
the only pair {3a, 7b} differing by 2.

4 Constraints on runs in P2

This section builds a proof of Theorem 1. Our method is to establish several
properties of runs in P2 that allow us to close in on the possible structure of
long runs. Finally we accumulate enough constraints to show that no run
of size 10 or more could possibly satisfy all the constraints, so we can con-
clude that every run in P2 has size less than 10. Consequences of Størmer’s
Neighboring Pairs Theorem are used in several key steps, including some of
the results in Table 1 and our Corollary to the Neighboring Pairs Theorem.

Property 1 Any run of consecutive integers in P2 contains at most one
multiple of 6.

Proof Since 89 and 97 are the first two consecutive primes with difference
greater than 6, it follows that between any two consecutive multiples of 6
less than 96 there is at least one prime. Since primes are in P1, no run in P2

can contain two consecutive multiples of 6 less than 96. On the other hand,
8 and 9 are the last two consecutive integers in S(2, 3), so 48 and 54 are the
last two consecutive multiples of 6 in P2. The property follows.

The next three properties concern multiples of 5 in P2 that occur within
runs which contain a multiple of 6.

Property 2 Only one maximal run of consecutive integers in P2 contains
a multiple of 6 and a multiple of 5 which differ by 2 or 3; that run is 158[5].

Proof If 6a and 5b are members of P2 that differ by 2, then 6a ∈ S(2, 3)
and 5b = 10c ∈ S(2, 5) for some integer c. Then 3a and 5c are consecutive
integers in S(2, 3, 5), and 80[2] is the last such pair. Hence the corresponding
pairs {6a, 5b} in P2 are {10, 12}, {18, 20}, {48, 50} and {160, 162}. For the
first three pairs, the intervening number is in P1; hence the only maximal
run in P2 that contain integers 6a and 5b with |6a− 5b| = 2 is 158[5].
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Similarly, if 6a and 5b are members of P2 that differ by 3, then 6a ∈
S(2, 3) and 5b = 15c ∈ S(3, 5) for some integer c, so 2a and 5c are consecutive
integers in S(2, 3, 5). The corresponding pairs {6a, 5b} in P2 are {12, 15},
{15, 18}, {45, 48} and {72, 75}, but in each case there is an intervening prime,
so no maximal run in P2 contains integers 6a and 5b with |6a− 5b| = 3.

Property 3 No run of consecutive integers in P2 contains a multiple of 6
and a multiple of 5 which differ by 4.

Proof First suppose 6a and 20b are members of P2 that differ by 4, so
6a = 12c ∈ S(2, 3) for some integer c, and 20b ∈ S(2, 5). Then 5b and
3c are consecutive integers in S(2, 3, 5). Since 80[2] is the last such pair,
the corresponding pairs {6a, 20b} in P2 are {20, 24}, {36, 40}, {96, 100} and
{320, 324}. The first three pairs have an intervening prime, while the last
pair is not in a run in P2 because 322 ∈ P3. Thus, no run of consecutive
integers in P2 contains a multiple of 6 and a multiple of 20 differing by 4.

Now suppose 6a and 10d are members of P2 that differ by 4, and d is odd.
Then |3a − 5d| = 2, so a is also odd. But 6a ∈ S(2, 3) and 10d ∈ S(2, 5),
so a is a power of 3 and d is a power of 5. By Corollary 1, {3, 5} and
{25, 27} are the only pairs of proper powers of 3 and 5 that differ by 2. The
corresponding pairs {6a, 10d} in P2 are {6, 10} and {50, 54}, but each has an
intervening prime, so neither pair is contained in a run in P2. The property
follows.

It is noteworthy that the pair {320, 324}, appearing in the proof of Prop-
erty 3, actually corresponds to a near miss: P2 contains the two maximal
runs 319[3] and 323[7], and the only intervening integer is 322 ∈ P3. The
two bordering integers are 318 ∈ P3 and 330 ∈ P4 (both multiples of 6), and
their neighbors 317 and 331 are consecutive primes.

Property 4 Any run of consecutive integers in P2 contains at most one
multiple of 5.

Proof On the contrary, suppose there is a run of consecutive integers in
P2 that contains two multiples of 5. Let R be that portion of the run which
begins and ends with two consecutive multiples of 5. Since R has size 6,
we have 6a ∈ R for some integer a. But 6a ∈ P2 so it is distinct from the
multiples of 5. If 6a differs by 2 from the nearer multiple of 5, these two
members of R belong to the maximal run 158[5], by Property 2. But this
does not contain two multiples of 5, so is disjoint from R. Hence 6a must be
adjacent to the nearer multiple of 5. But then it must differ by 4 from the
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other multiple of 5 in R, and Property 3 shows that no run in P2 contains
two such numbers. Hence, by contradiction, R does not exist.

Since any run of 10 consecutive integers contains two multiples of 5,
Property 4 immediately implies our target result:

Theorem 1 There is no run of 10 consecutive integers in P2.

Corollary 2 Runs in P2 have maximum size r(2) = 8 or 9.

Although our methods do not seem to be strong enough to decide whether
runs of size 9 exist in P2, consideration of multiples of 7 yields further prop-
erties, revealing more of the structure of P2. In particular, we are led to
discover the examples of runs of size 8 in P2 which are incorporated in
Conjecture 1. We shall pursue this in the next section.

5 Further constraints on runs in P2

Now that we know P2 has no runs of size 10 or more, the study of long runs
of rank 2 integers can proceed by asking: What is the structure of any run
of size 7 or more in P2? Since any run of 7 consecutive integers must contain
a multiple of 7, at least one multiple of 6, and at least one multiple of 5, the
relative placement of these multiples will now be considered.

Property 5 Only two maximal runs of consecutive integers in P2 contain
a multiple of 6 and a multiple of 7 which differ by 2 or 3 : those runs are
54[5] and 141[8].

Proof If 6a and 7b are members of P2 that differ by 2, then 6a ∈ S(2, 3)
and 7b = 14c ∈ S(2, 7) for some integer c. Then 3a and 7c are consecutive
integers in S(2, 3, 7). From the fact that 4374[2] is the last pair in S(2, 3, 5, 7),
a straightforward calculation verifies that 63[2] is the last pair in S(2, 3, 7).
The corresponding pairs {6a, 7b} in P2 are {12, 14}, {54, 56} and {96, 98}.
For the first and third pair, the intervening number is prime; hence the only
maximal run in P2 that contains integers 6a and 7b with |6a − 7b| = 2 is
54[5].

Similarly, if 6a and 7b are members of P2 that differ by 3, then 6a ∈
S(2, 3) and 7b = 21c ∈ S(3, 7) for some integer c, so 2a and 7c are consecutive
integers in S(2, 3, 7). The corresponding pairs {6a, 7b} in P2 are {18, 21},
{21, 24}, {81, 84}, {144, 147} and {189, 192}. For all but one of these pairs,
there is an intervening prime; hence the only maximal run in P2 that contains
integers 6a and 7b with |6a− 7b| = 3 is 141[8].
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Property 6 Any run of consecutive integers in P2 contains at most one
multiple of 7.

Proof On the contrary, suppose there is a run R of consecutive integers
in P2 that contains two consecutive multiples of 7. Since they are in P2,
neither is a multiple of 6, so there is a multiple of 6 between them but not
adjacent to either of them. Thus the multiple of 6 and the nearer multiple
of 7 differ by 2 or 3, so R must be contained in 54[5] or 141[8], by Property 5.
But each of these runs contains only one multiple of 7, so by contradiction
it follows that R does not exist.

Property 7 There are no runs of consecutive integers in P2 that contain a
multiple of 6 and a multiple of 7 which differ by 4.

Proof First suppose 6a and 28b differ by 4 and belong to some run of
consecutive integers in P2. Then 6a = 12c ∈ S(2, 3) for some integer c,
and 28b ∈ S(2, 7), so 7b and 3c are consecutive integers in S(2, 3, 7). As
noted in the proof of Property 5, 63[2] is the last pair in S(2, 3, 7). The
corresponding pairs in P2 are {24, 28}, {108, 112} and {192, 196}, but none
of them is contained in a run in P2.

Now suppose, for some odd integer d, that 6a ∈ S(2, 3) and 14d ∈ S(2, 7)
differ by 4 and belong to some run of consecutive integers in P2. Then
|3a − 7d| = 2, so a is odd; hence 3a is a power of 3 and 7d is a power of
7. By our corollary to the Neighboring Pairs Theorem, {7, 9} is the only
pair of proper powers of 3 and 7 that differ by 2; the corresponding pair
{6a, 14d} = {14, 18} in P2 is not contained in a run in P2. The property
follows.

Property 8 Exactly two maximal runs of consecutive integers in P2 contain
a multiple of 6 and a multiple of 35: these are 33[4] and 4374[2].

Proof If 6a and 35b are members of some run of consecutive integers in
P2, then 6a ∈ S(2, 3) and 35b ∈ S(5, 7), so |6a − 35b| cannot be a multiple
of 2, 3, 5 or 7. But every run in P2 has size less that 10, by our Theorem, so
|6a− 35b| = 1, and 6a and 35b are consecutive integers in S(2, 3, 5, 7). Since
4374[2] is the last nontrivial run in S(2, 3, 5, 7), the corresponding pairs in
P2 are {35, 36} and {4374, 4375}. The corresponding maximal runs in P2

are 33[4] and 4374[2].

Property 9 Any run of size at least 7 in P2 contains exactly one multiple
of 6, exactly one multiple of 5, and exactly one multiple of 7, and these are

9



three distinct members of the run. The multiple of 5 is always adjacent to
the multiple of 6. If the run has size 8 or more, the multiple of 7 is also
adjacent to the multiple of 6, except in the case of the maximal run 141[8].

Proof Uniqueness of the multiples of 6, 5 and 7 follows from Properties
1, 4 and 6 respectively. By Property 8, the only two runs in P2 containing
a multiple of 6, and a multiple of 5 which is also a multiple of 7, have size
less than 7. Hence, in any run of size 7 or more, all three must be distinct
integers. By Properties 2 and 3, in any run of size at least 6 in P2 the
multiple of 5 must be adjacent to the multiple of 6. In a run of size 8 or
more, the unique multiple of 7 must occur in the intersection of the first 7
integers and the last 7; similarly the unique multiple of 6 must occur in the
intersection of the first 6 integers and the last 6. Hence the multiple of 6 and
multiple of 7 differ by at most 4. By Property 7, there is no run in which
the difference is 4. By Property 5, 141[8] is the only run of size at least 8 in
which the difference is 2 or 3. Hence, in every other run of size 8 or more,
the difference must be 1.

Property 10 Except for the maximal run 141[8], in any run of size 8 or
more in P2 the multiple of 6 is of the form 6a26b or 6a36b, where a ≥ 1 and
b ≥ 0 are integers of opposite parity.

Proof Let R 6= 141[8] be a run of size 8 in P2, and let n be its multiple of
6. In some order, its multiples of 5 and 7 are n− 1 and n + 1, by Property
9. Put n = 2c3d, where c and d are positive integers.

Suppose 5|n − 1 and 7|n + 1. Then 2c3d ≡ 33c+d ≡ 1 (mod 5) and
2c3d ≡ 32c+d ≡ −1 (mod 7), so 3c+d ≡ 0 (mod 4) and 2c+d ≡ 3 (mod 6).
Hence c ≡ d (mod 12) and c ≡ d ≡ 1 (mod 2). Put a = min{c, d}, where
a ≥ 1 is odd. Also let |c − d| = 12s, and put max{c, d} = a + 6b, where
b = 2s ≥ 0 is even. Then n = 6a26b or 6a36b.

Now consider 5|n + 1 and 7|n− 1. In this case 3c + d ≡ 2 (mod 4) and
2c + d ≡ 0 (mod 6), so c ≡ d + 6 (mod 12) and c ≡ d ≡ 0 (mod 2). Put
a = min{c, d}, where a ≥ 2 is even. Also let |c − d| = 12s + 6, and put
max{c, d} = a + 6b, where b = 2s + 1 ≥ 1 is odd. Again we have n = 6a26b

or 6a36b. The property follows.

The combined weight of Properties 5 to 10 now enables us to prove

Theorem 2 In P2, up to 1025 there is no run of size 9 and the only maximal
runs of size 8 are 141[8] and 212[8].
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Proof Property 10 provides a strong restriction on the possible multiples
of 6 in any run of size 8 or 9 in P2. Up to 1025 there are just 90 of the
special multiples of 6 with a odd, and 84 multiples with a even. It is a
straightforward computation to check beside these 174 numbers. We find
one gem, the maximal run 212[8]. No later run of size 8 or 9 occurs up to
1025.

Indeed, among runs in P2 that contain three consecutive integers which
are multiples of 5, 6 and 7, the only other instances of size greater than
3 below 1025 are 2302[7] and 24575[5]. These computations provide strong
evidence for Conjecture 1.

The study of maximal runs in P2 raises other intriguing questions, in-
cluding: Are there infinitely many pairs of consecutive integers in P2? What
is the smallest positive integer r0 such that for each r ≥ r0 there are only
finitely many runs of size r in P2? We simply don’t know the answers to
these questions, just as we don’t know the answers to the corresponding
questions for P1.

Next we turn our attention to runs in Pn for n ≥ 3.

6 Computing runs in Pn for n ≥ 3

Computation sheds some interesting light on runs in Pn with n ≥ 3, and
turns up some delightful gems.

Since a and a+1 are coprime, if {a, a+1} ⊂ Pn, then each has n principal
divisors, so a(a + 1) ≥ p1p2 · · · p2n, the product of the first 2n primes. But
(a+1)2 > a(a+1), so a+1 > (p1p2 · · · p2n)1/2, and the ceiling of this square
root is a lower bound for a + 1. The product of primes is never a square, so
the floor of the square root gives the lower bound

a ≥ b(p1p2 · · · p2n)1/2c.

Table 2 lists the first maximal run in Pn for 3 ≤ n ≤ 7, together with
the corresponding factorizations. In each case the first maximal run has size
2. It is interesting to notice how the small primes crowd in and form the
majority of principal divisors in the first maximal run of each rank set. It
is possible that the first maximal run in Pn always occurs in the interval
[A, 2nA], where A = b(p1p2 · · · p2n)1/2c. Indeed, each instance in Table 2
occurs in the interval [A, 2n/2A].

Table 3 lists the starters of successive maximal runs of size 2 in Pn

for 3 ≤ n ≤ 7. In each case the interval [A, 2n/2A] contains at least 5
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Pn First maximal run a a + 1
P3 230[2] 2.5.23 3.7.11
P4 7314[2] 2.3.23.53 5.7.11.19
P5 254540[2] 22.5.11.13.89 3.7.17.23.31
P6 11243154[2] 2.3.13.17.61.139 5.7.11.19.29.53
P7 965009045[2] 5.7.11.13.23.83.101 2.3.17.29.41.73.109

Table 2: First maximal runs a[2]

maximal runs. Moreover, for P8, the corresponding interval contains the
maximal run a[2] with a = 68971338435, since a = 3.5.17.23.29.31.103.127
and a+1 = 22.7.11.13.19.37.107.229, but we do not know whether this is the
first maximal run in P8, nor how many maximal runs occur in this interval.

Pn Starters of successive maximal runs of size 2
P3 230, 285, 429, 434, 455, 494, 560, 594, 609, 615, · · ·
P4 7314, 8294, 8645, 9009, 10659, 11570, 11780, 11934, 13299, · · ·
P5 254540, 310155, 378014, 421134, 432795, 483405, 486590, · · ·
P6 11243154, 13516580, 16473170, 16701684, 17348330, 19286805, · · ·
P7 965009045, 1068044054, 1168027146, 1177173074, 1209907985, · · ·

Table 3: Successive maximal runs of size 2

We have also computed the first maximal runs of various sizes r ≥ 3 in
Pn for 3 ≤ n ≤ 6. Table 4 summarizes this data.

From Tables 2 and 4 we have r(3) ≥ 16, r(4) ≥ 12, r(5) ≥ 5, r(6) ≥ 3
and r(7) ≥ 2. We have also seen that r(8) ≥ 2. It is noteworthy that the
data in Table 4 is not monotonic: the first maximal run of size 14 in P3

precedes the first maximal runs of sizes 12 and 13, and the first maximal
run of size 7 in P4 precedes the first maximal run of size 6. We have already
seen this phenomenon in P2, where the first maximal run of size 8 precedes
the first maximal run of size 7.

Let us briefly consider lower bounds for the starters of runs of size r ≥ 3.
Of course, the square root lower bound A for runs of size 2 is also a lower
bound for longer runs, but we want something stronger. Suppose {a, a +
1, a+2} ⊂ Pn. The only divisor that can be common to two of these integers
is 2. If 2|a + 1 there is no common divisor, so a(a + 1)(a + 2) ≥ p1p2 · · · p3n,
the product of the first 3n primes. If 2|a then 2 is a common divisor and
8|a(a+2), so a(a+1)(a+2) ≥ 4p1p2 · · · p3n−1. Combining (a+1)2 > a(a+2)
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r P3 P4 P5 P6

2 230 7314 254540 11243154
3 644 37960 1042404 323567034
4 1308 134043 21871365 · · ·
5 2664 357642 129963314
6 6850 2713332 830692265
7 10280 1217250 4617927894
8 39693 14273478 · · ·
9 44360 44939642

10 48919 76067298
11 218972 163459742
12 534078 547163235
13 2699915 2081479430
14 526095 2771263512
15 17233173 · · ·
16 127890362

Table 4: First maximal runs of increasing size

with the very weak inequality p3n > 4 yields a lower bound that holds
regardless of whether a is odd or even:

a ≥ b2(p2p3 · · · p3n−1))
1/3c.

Let us denote this lower bound by B. Similar reasoning yields lower bounds
for the starters of longer runs, but here we only consider A and B.

If n = 2 then A = 14 and B = 20, and these are precisely the starters
of the first runs of sizes 2 and 3 in P2. If n = 3 then 230[2] ⊂ [A, 2A] and
644[3] ⊂ [B, 2B] where A = 173 and B = 338. And so on. Perhaps the first
maximal run of size 3 in Pn always occurs in the interval [B, 2nB].

7 Nontrivial runs in Pn for n ≥ 3

Our computational results certainly confirm that r(n) ≥ 2 for n ≤ 8. But it
is not obvious that there are nontrivial runs in Pn for every n. In this section
we shall show how to make new runs from old, in particular, how to use
suitable sets of 4 neighboring integers in Pn to produce pairs of consecutive
integers in P2n−1.

For positive integers a, s, t with s < t, the integers a(a + s + t) and
(a+s)(a+t) differ by st. By imposing appropriate conditions on the divisors

13



of a, a + s, a + t and a + s + t, we can ensure that

b =
1
st

a(a + s + t), b + 1 =
1
st

(a + s)(a + t)

are consecutive integers with equally many principal divisors. The simplest
case is when s = 1 and t = 2 :

Theorem 3 If {a, a+1, a+2, a+3} ⊂ Pn and 12|a(a+3), then b = 1
2a(a+3)

and b + 1 = 1
2(a + 1)(a + 2) are consecutive integers in P2n−1.

Proof Since a and a + 3 differ by 3, their only possible nontrivial common
factor is 3. If 12|a(a + 3) then exactly one of a and a + 3 is divisible by 4,
the other is odd and both are divisible by 3. Hence the principal divisors of
b = 1

2a(a + 3) include a power of 2, and the product of powers of 3 in a and
a + 3, so b ∈ P2n−1. Also a + 1 and a + 2 are relatively prime and b + 1 is
odd, so b + 1 ∈ P2n−1.

For example, with a = 33 and (s, t) = (1, 2), the run 33[4] ⊂ P2 yields
b = 594 = 1

2 .33.36 = 2.33.11 and b + 1 = 595 = 1
2 .34.35 = 5.7.17, so

{b, b + 1} ⊂ P3. In fact, 594[2] is a maximal run in P3.
By making other choices for a, s, t so that {a, a+s, a+ t, a+s+ t} ⊂ P ∗

n ,
we can construct {b, b+1} = {a(a+s+ t)/st, (a+s)(a+ t)/st} ⊂ Pm, where
Pm = P2n−1 when P ∗

n = Pn, and Pm = P2n when P ∗
n is a suitable union

of two or more rank sets. Table 5 summarizes some illustrative examples,
based on the maximal runs 33[4], 141[8] and 2302[7] in P2, and 1308[4], the
first run of size 4 in P3. Note that extending into the neighborhood of 2302[7]

yields some pairs {b, b + 1} in P4.
Up till this point in our discussions, P8 is the highest rank set in which

we have noted a nontrivial run. With Theorem 3 we can now produce
an example in P9. The first maximal run of size 4 in P5 is a[4] where
a = 21871365. Since a + 3 is a multiple of 12, we have

b =
1
2
a(a + 3) = 22.33.5.29.31.41.137.239.367

b + 1 =
1
2
(a + 1)(a + 2) = 7.11.17.23.37.61.97.131.277

so {b, b + 1} ⊂ P9 with b = 239178336288660. Hence r(9) ≥ 2.

8 Matched primes in arithmetic sequences

In this section we shall show how the simultaneous occurrence of primes
in two arithmetic sequences leads to pairs of consecutive integers in Pn.

14



P ∗
n s t a b Pm

P2 1 2 33 594 P3

P2 1 2 141 10152 P3

P2 1 2 144 10584 P3

P2 1 3 141 6815 P3

P2 1 3 144 7104 P3

P2 1 2 2304 2657664 P3

P2 1 3 2303 1771007 P3

P2 1 3 2304 1772554 P3

P2 1 4 2303 1328831 P3

P2 ∪ P3 1 3 2300 1766400 P4

P2 ∪ P5 2 3 2310 891275 P4

P2 ∪ P3 2 3 2313 893589 P4

P3 1 2 1308 857394 P5

Table 5: New runs from old

Our approach is based on Dirichlet’s famous 1837 theorem on primes in
an arithmetic sequence. His presentation can be read in [3]; for a more
accessible account [2] is recommended.

Dirichlet’s Theorem on Primes in an Arithmetic Sequence For any
coprime positive integers m and r, the arithmetic sequence {km+ r : k ≥ 0}
contains infinitely many primes.

In fact it is known that the primes are shared rather equitably among
the arithmetic sequences with common difference (modulus) m. There are
ϕ(m) such sequences in which the members are coprime with m, and each
contains about n/ϕ(m) of the first n primes that are not divisors of m.
As n grows this is increasingly accurate. Indeed, there is a “folk theorem”
that among the primes there are infinitely many occurrences of any finite
“pattern” that is not explicitly ruled out by modular considerations. For
instance, the patterns {a, a + 1} and {a, 2a + 1} are ruled out modulo 2 and
3 respectively, but {a, a + 2} and {a, 2a − 1} are “possible” patterns in the
primes, and the “folk theorem” applied to them would imply the existence
of infinitely many twin primes and infinitely many Mersenne primes. Of
course, this does not prove these possibilities, but does suggest that they
could be true. With such considerations, if we match up the nth terms of any
two arithmetic sequences that contain primes, it is plausible that infinitely
often the matched pairs are both primes. Formally, this can be stated as
follows:
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Conjecture 2 If m, m′, r, r′ are positive integers with gcd{m, r} = 1 and
gcd{m′, r′} = 1, there are infinitely many positive integers k such that km+r
and km′ + r′ are both prime.

For example, 2k + 1 and 3k + 2 are simultaneously prime when k =
1, 3, 5, 9, 15, · · · , and the corresponding pairs are {2k + 1, 3k + 2} = {3, 5},
{7, 11}, {11, 17}, {19, 29}, {31, 47}, · · · . This is of interest in our present
context because b = 3(2k+1) and b+1 = 2(3k+2) are consecutive integers,
so {b, b+1} ⊂ P2 whenever 2k +1 and 3k +2 are primes greater than 3. We
deduce that {21, 22}, {33, 34}, {57, 58}, {93, 94}, · · · are pairs of consecutive
integers in P2. Generalizing this example, we have

Theorem 4 If Conjecture 2 is true, there are infinitely many pairs of con-
secutive integers in Pn, for each n ≥ 2.

Proof For some n ≥ 2 let m = p1 · · · pn−1 and m′ = pn · · · p2n−2 be the
product of the first n − 1 primes and the next n − 1 primes, respectively.
Let x0 be the smallest positive solution of the simultaneous congruences
x ≡ 1 (mod m) and x ≡ 0 (mod m′). The Chinese Remainder Theorem
(see [16], for example) ensures that x0 exists, and the general solution is
x ≡ x0 (mod mm′). Then there are positive integers r and r′ such that
x0 − 1 = mr′ and x0 = m′r, so the general solution satisfies

x = m′r + kmm′ = m′(km + r)
x− 1 = mr′ + kmm′ = m(km′ + r′)

where k runs through the integers. Since gcd{x0, x0 − 1} = 1 we have
gcd{mr′,m′r} = 1, so gcd{m, r} = gcd{m′, r′} = 1. If Conjecture 2 holds, it
follows that there are infinitely many positive integers k such that p = km+r
and q = km′ + r′ are simultaneously prime. If k is large enough, then p and
q are not among the first 2n − 2 primes, so b = mq and b + 1 = m′p are
consecutive integers with n principal divisors (all of which happen to be
prime).

Although Theorem 4 depends on the unproven Conjecture 2, it is still
effective in yielding numerical results, because the proof shows how com-
putation can be used to seek concrete instances of the construction. For
example, when n = 10 we have

m = 2.3.5.7.11.13.17.19.23 = 223092870
m′ = 29.31.37.41.43.47.53.59.61 = 525737919635921.
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The smallest positive solution to x ≡ 1 (mod m) and x ≡ 0 (mod m′) is

x0 = 6949903578918639188851,

so x0 − 1 = mr′ and x0 = m′r give r = 13219331 and r′ = 31152513206355.
The sequences {km + r : k ≥ 0} and {km′ + r′ : k ≥ 0} are simulta-
neously prime when k = 26, 38, 74, · · · , so the smallest pair of matched
primes is {p, q} = {5813633951, 13700338423740301} yielding {b, b + 1} =
{mq, m′p} ⊂ P10 with b = 3056447818923499884753870. Hence r(10) ≥ 2.

9 Upper bounds on r(n) for n ≥ 3

In the Introduction we noted that no run of consecutive integers in Pn can
contain a multiple of M = p1p2 · · · pn+1, the product of the first n + 1
primes, so r(n) < M. Thus r(2) < 30. Eventually we proved 8 ≤ r(2) ≤ 9.
As a first step toward this result, we showed that no run in P2 contains
more than one multiple of 6, which immediately implies the improved upper
bound r(2) < 12. We shall now show that the same ideas yield corresponding
results for n ≥ 3.

Theorem 5 For any positive integer n, let N = p1p2 · · · pn be the product of
the first n primes, and let b be the largest integer such that no prime factor
of the product b(b+1) exceeds pn. Then no run of consecutive integers greater
than bN in Pn contains more than one multiple of N.

Proof For any integer b, if no prime factor of the product b(b+1) exceeds pn,
then {b, b+1} ⊂ S(p1, p2, · · · , pn) and conversely. By the Neighboring Pairs
Theorem, there exists a largest integer b with this property. Then bN and
(b + 1)N are the last two consecutive multiples of N in S(p1, p2, · · · , pn).
Suppose R is a run of consecutive integers greater than bN in Pn, and
suppose R contains at least one multiple of N. Let aN be the smallest
multiple of N in R. Then aN ∈ Pn and N ∈ Pn ∩ S(p1, p2, · · · , pn), so
a ∈ S(p1, p2, · · · , pn). But a > b, so a + 1 /∈ S(p1, p2, · · · , pn). Thus a + 1
contains a prime factor p > pn, and (a + 1)N has at least n + 1 principal
divisors. Thus (a+1)N /∈ Pn, so (a+1)N /∈ R, and the theorem follows.

Corollary 3 No run of consecutive integers in P3 contains more than one
multiple of 30, and no run of consecutive integers in P4 contains more than
one multiple of 210.

17



Proof Since N = 30 is the product of the first 3 primes, and b = 80 is
the largest integer such that {b, b + 1} ⊂ S(2, 3, 5), the theorem ensures
that no run of consecutive integers greater than bN = 2400 contains more
than one multiple of 30. On the other hand, the gap between each pair of
consecutive primes up to 2411, the first prime greater than bN, is less than
30, with one exception. The exceptional pair is {1327, 1361}, with difference
34. Since 1350 is the only multiple of 30 between 1327 and 1361, it follows
that among the nonnegative integers up to (b+1)N = 2430, there is at least
one prime between every pair of consecutive multiples of 30. Hence no run
of consecutive integers in P3 contains two consecutive multiples of 30.

A similar argument applies for P4, with N = 210 and b = 4374. The
gaps between consecutive primes up to 918563, the first prime greater than
bN , are all less than 210, so the claimed result follows. Indeed, the largest
gap between consecutive primes up to 918563 is 114, achieved by the pair
{492113, 492227}.

Corollary 3 immediately implies bounds which are better than r(3) <
2.3.5.7 = 210 and r(4) < 2.3.5.7.11 = 2310, but presumably they are still
far from the true values.

Corollary 4 Upper bounds on the size of maximal runs in P3 and P4 are
r(3) ≤ 59 and r(4) ≤ 419.

10 Closing remarks

An extension of Størmer’s Neighboring Pairs Theorem shows that for any
finite set of primes P and any positive constant c there are only finitely many
pairs of integers in S(P ) which differ by c. As noted in [8], this follows from
a theorem of Alan Baker on logarithms of algebraic numbers [1].

One of the most intriguing questions left open in our discussion is whether
there are pairs of consecutive integers in Pn for every n ≥ 1. Examples for
1 ≤ n ≤ 10 are found in the paper, but what is the case for larger n? We
boldly conjecture that in fact there are infinitely many such pairs for every
n ≥ 1. We showed that this holds for n ≥ 2 if Conjecture 2 is true. Al-
though Conjecture 2 does not appear to imply that P1 contains infinitely
many pairs of consecutive integers, it does imply that there are infinitely
many twin primes, an assertion that is a notorious unproven conjecture in
its own right.

Apart from our computational results, we have shed little light on the
existence of runs of size 3 in Pn. We found such runs for 1 ≤ n ≤ 6, but
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we have no example with n ≥ 7, and no basis for conjecturing whether or
not any Pn might contain infinitely many such runs. But it is conceivable
that for every n ≥ 1 there are only finitely many runs of size greater than
N in Pn, where N is the product of the first n primes. We showed that this
is true when n = 1, and we gave strong computational evidence in its favor
when n = 2.
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